Targeted LC-MS/MS Quantitation of Legacy and **Emerging Per- and** Polyfluoroalkyl Substances (PFAS) in Water Matrices

Tarun Anumol, Ph.D. Director, Global Environment & Food Markets Agilent Technologies, Inc.

Per- and Polyfluoroalkyl substances (PFAS) Useful or harmful?

- Thermal and chemical stability
 - Grease-proof food packaging and stain repellents
- Zwitterionic properties
 - Surfactants
- Surface-tension lowering
 - Fire-fighting foams

 Presence of PFAS in drinking water and water sources is of emerging concern globally due to widespread usage, environmental persistence and bioaccumulative tendency

Driving PFAS Analysis – Continued Media/Regulatory Focus

These Everyday Toxins May Be Hurting Pregnant Women and Their Babies

https://www.nytimes.com/2020/09/23/paren ting/pregnancy/pfas-toxins-chemicals.html PFAS, industrial chemicals used to waterproof jackets and grease-proof fast-food containers, may disrupt pregnancy with lasting effects.

Europe To Adopt Sweeping Tap Water Limits for PFAS, Other Toxic Contaminants

D PDF

https://www.ewg.org/release/europe-adopt-sweepingtap-water-limits-pfas-other-toxic-contaminants

It is currently not possible to perform in-depth environmental and health risk assessments of all chemical substances in use in Europe because of the great variety of chemicals and their diverse uses. New and legacy chemicals continue to be released into Europe's environment, adding to the total chemical burden on Europe's citizens and ecosystems. Early identification of emerging risks is one of the activities of the European Environment Agency (EEA). This briefing summarises the known and potential risks to human health and the environment in Europe posed by a group of very persistent chemicals, the per- and polyfluorinated alkyl substances (PFAS).

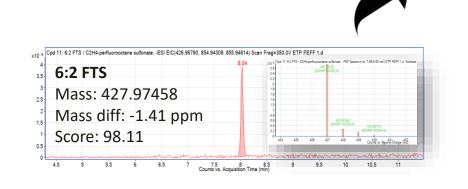
Published 12 Dec 2019 — Last modified 09 Mar 2021 — 12 min read — Photo: © imani vDQ e3RtaoE / Unsplash

https://www.eea.europa.eu/ publications/emergingchemical-risks-in-europe

'Canary in a coal mine': Scientists test alligators for PFAS chemical compounds

Kristen Johnson The Fayetteville Observer Published 6:30 a.m. ET May 6, 2021 | Updated 9:37 a.m. ET May 6, 2021

View Comments 🕜 😏 🔛


Researchers are studying the effect of per- and polyfluoroalkyl substances, or PFAS, on alligators. Associated Press

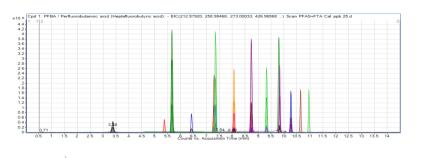
https://www.fayobserver.com/story/new s/2021/05/06/north-carolina-alligatorsfound-have-autoimmune-responsepfas-chemicals/4945275001/

Complete PFAS Analytical Workflow

Known knowns Expanded targeted list (~50-100 compounds)

WED, Aug 11 11:30 AM Accurate Mass QTOF – A new Direction in PFAS Quantification, Kathy Hunt, Vogon Labs

NEMC 2021


LC/TQ

Continually refining targeted method

LC/Q-TOF

Known unknowns Expanded PFAS database

Unknown unknowns

Adding identified compounds to database list

Challenges associated with PFAS Testing

□ Increased Scope

- Or 6? Or 14? Or 25 or..... 4000 possible PFAS, How many to measure
- More volatile PFAS, smaller PFAS, different structures and end groups

Increased Throughput

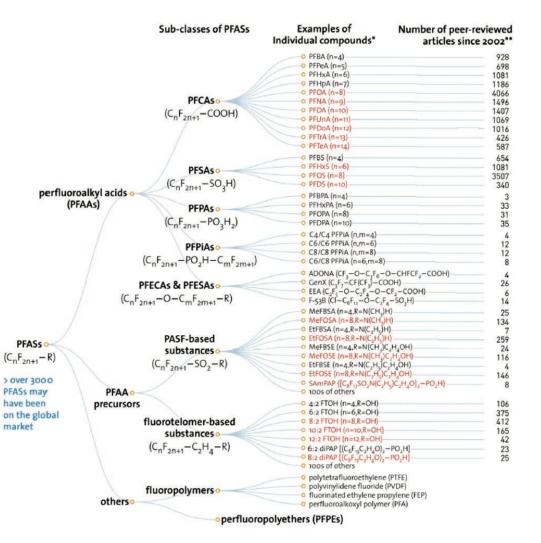
- Faster turnaround times demanded
- Better methodologies to quickly gauge PFAS contamination

Extremely low detection levels and background issues

- o Low and even sub part per trillion levels to be detected
- PFAS are nearly ubiquitous in work environments and in lab products

□ Fast evolving regulations

- New PFAS to be measured, different matrices
- New Standard methods
- Different Audits and Accreditations Data Integrity, Security & Compliance



PFAS Classifications and Terminology

>4000 PFAS compounds in commerce

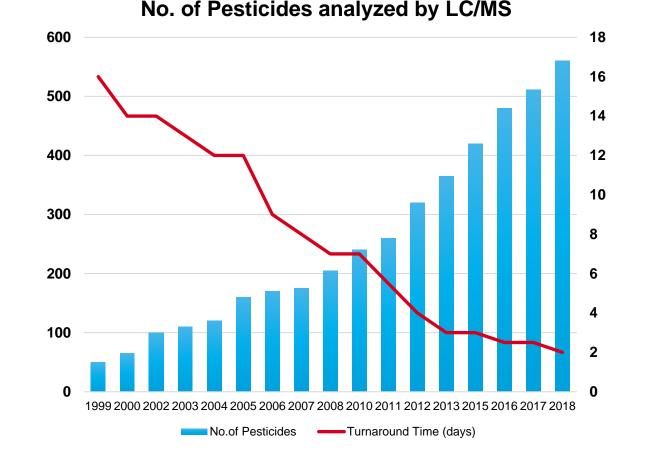
Common Acronyms

PFCA	Perfluoroalkylcarboxylic acid			
PFOA	Perfluorooctanecarboxylic acid			
PFAS	Perfluoroalkylsulfonate			
PFOS	Perfluorooctanesulfonate			
PFASi	Perfluoroalkylsulfinate			
FOSA	Per f luoro o ctane s ulfon a mide			
FOSAA	Per f luoro o ctane s ulfon a mido a cetic acid			
FOSE	Per f luoro o ctane s ulfonamido e thanol			
FTOH	Fluorinated telomer alcohol (-OH functional group)			
FTA	Fluorinated telomer acid			
FTUA	Fluorinated telomer unsaturated acid			
FTS	Fluorinated telomer sulfonate			
PFAPA	Perfluoroalkylphosphonic acid			
PFPi	Perfluoroalkylphosphinate			
PAP	Mono-substituted p olyfluoro a lkyl p hosphate ester			
diPAP	Di-substituted polyfluoroalkylphosphate ester			
PFAI	Perfluoroalkyl iodide			
SFA	Semifluorinated alkane			
FTI	Fluorinated telomer iodide			
FTO	Fluorinated telomer olefin			
FTAC	Fluorinated telomer acrylate			

Wang, Z et al. (2017). Environ. Sci. Technol. 51, 2508-2518.

Where to go with PFAS Quantification Been there, Done that ... ?

History with Pesticides Analysis


Sample Turnaround Time from 2 weeks to 2 days

Cost per sample drastically reduced

Analysis time on instrument reduced from >80 min to 16 min

Analytical methods reduced to multi-residue mega method

Commercial Food Lab

PFAS analysis needs many aspects to Meet Various Laboratory Needs Individual Products and Services for Regulatory and Individual Method Development

LC-MS/MS instrumentation

Store Al Facurda	Seath-The			- 54	esh Caresonds				
the Consorth					Search Test				
Stuble filters		EPs.530 EPs.5371 A570			Select Dolume of Name				
Colonies Consumeda					150			ourd Name	
Data From The	S 2028 U- 51 00-04-201						N Horn	da .	
Geatiere	Trad	tiere:	10				in the		
name in	Date Nate		121				C (26		
Table .							C Own	cal Cases	
					Hash etile vod fa	pack-ding			
Sent Treature					pines and type flags			Res tandar	
O Selection (1	wisting to a loss					and benefitere as		(R Antes	
O Penarybanations		Select To	ration				-	O Regime	
O Secondary transition	•				Set Pirvales and	Tappe			
Compound Name	10%C Name	CAS	Formula	ChardSpide	Pulatity	Bass	Pecasar	Protect	Fing #
I WEL	Hepheluoratulantic acid	375-32-4	C##702	3234	Regains .	213.85	213	102	
PEFeA	Noral congestarion and	2706-90-3	CSHFH02	68425	Neptive	281.96	201	218	
T PERMA	Undecellurobespecia acid	307-24-4	CI9+#1102	62064	Nepstive	313 90	212	20	
PFHIA	United Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-	107.34-4	CIN-F1102	60364	Nexter	212.95	30	19	3
T mapa	Tripical unshiptensic acid	375-85-8	CIN#1302	61128	Nejstve	362.95	303	213	- 1
- PFMA	Trateculus subspaces cand	375-85-9	C7HF1302	61126	Neptive	361 99	30	107	
T MOA	Pertadiculfumostenic and	225-67-1	CBHF1503	3130	Reptile .	413.57	413	32	_
C PFOA	Pertaheafuroscoros and	25-67-1	CBHF1502	9180	Regative	#1397 +1397	411	168	
CI PESA	Pertabolishumochanic and Highlimithumoranistic and	15-6-1	CBF 1302	FILE	Reptile Reptile	40.57	40	10	-
CI White	Neptedecalhammenanic acid	275-95-1	CB#F1702	81128	Taget re	451.51	403	218	
CI PENL	Neglodecellucroscenoc and	15-16-1	CB+F1702	6113	Negative	46157	10	NB	-
CT PEINCH	Nerictual amortecantic acid	250.54.8	C116/2102	0144	Negative .	463.95	463	. 419	
PFINGL	Nervestlanded and and	2258-54-4	C11wF2102	43643	Negative	163.96	543	20	-
CT PENE	Nercosfurnationers and	2255-54-3	C11HF2102	1944	Nextra	42140	441	312	-
PEDIDA	Transformented accession accel	307-55-1	CONFUSOR	8287	Sept.e	612.96	413	542	7
PHOLOA	Tresset arodotecenic acid	207-55-1	C12HF2302	62967	Negative	26.073	812	219	1
PEDIDI	Transformationers and	37-55-1	C12HF2302	12007	Negative	612.96	£13	20	- 1
PF0x0A	Tresself are dotecting acid	307-85-1	C12HF2302	80967	Neptice	613.96	613	169	1
PF104	Personal and idearate and	1329-94-8	CTIHE2502	2205807	Negative	6235	-642	418	3
C) PF164	Pertaccealfunctivecencic acid	72829-54-8	C13HF2900	2285807	Negative	662.96	80	315	×.
									2
					And to import \$14		-		Orm

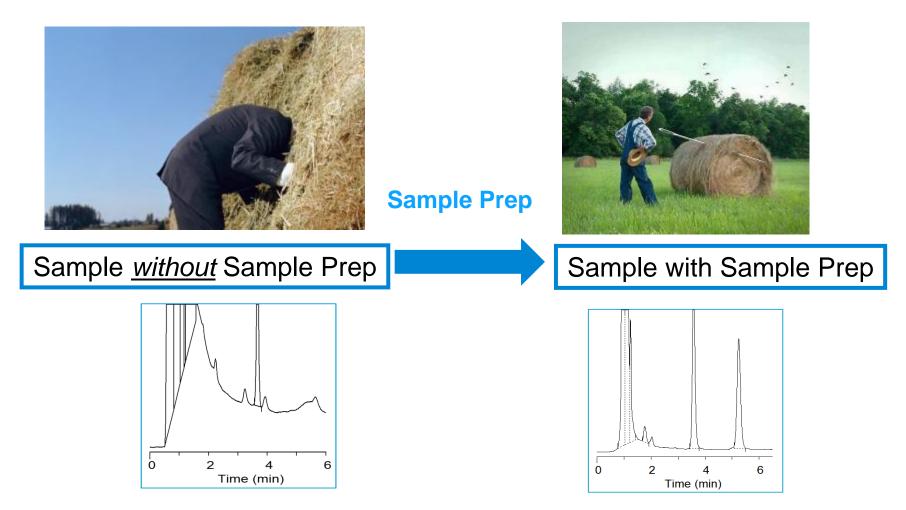
PFAS MRM Database

PFC-Free HPLC Conversion Kit

PFC-Free Columns and Supplies

Accelerate Productivity, Improve Outcomes

Agilent CrossLab method and application services


Application Services & Support

Sample Preparation

Sample preparation refers to the ways in which samples being treated prior to their analysis. Target analytes are the needle in the haystack of matrix, sample prep helps find the needle in the haystack.

Why sample prep is important for sample analysis?

- Extraction
- ✓ Sample clean-up
- Dilution or concentration
- To protect the instrument detection system from contamination
- Improve the detection method robustness and reliability

SKIPPING SAMPLE PREP IS GREAT!!!!! UTIL IT'S NOT

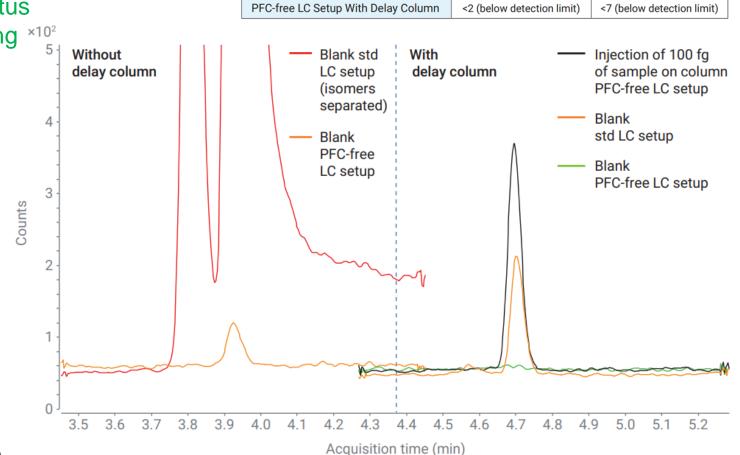
Sampling Handling & Storage Advances 'PFAS' specific vials and caps

- PTFE lining in Caps can have PFAS contamination
- This leads to use of PP style snap top vials that have very poor sealability on piercing or longer-term storage with organic solvent
- This can result in use of 2 or more caps per sample
- Glass vials are thought to adsorb certain PFAS, hence PP vials are preferred

Description	Part number
2 mL screw style clear polypropylene vial (100pk)	5191-8150
9 mm screw style clear polypropylene cap with thin membrane polypropylene / silicone septa (100pk)	5191-8151

of PP and

silicone that



PFC Free Kit Eliminate Background Contamination

Potential Contamination Sources

- Solvents ٠
- Filtration apparatus ٠
- Teflon lined tubing ***10²** •

LC Configuration

Standard LC Setup With Delay Column

Standard LC Setup

PFC-free LC Setup

PFHpA Background (fg)

>3,000

48

20

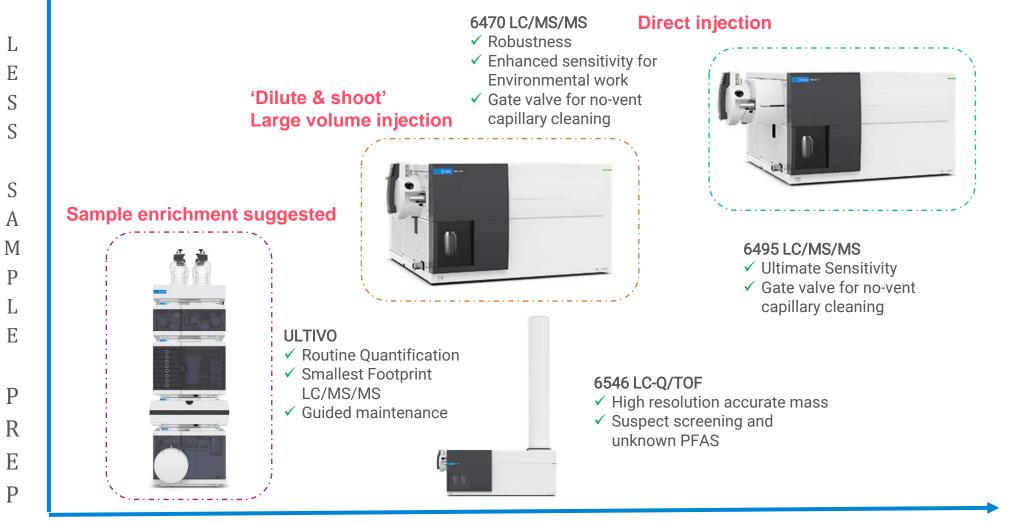
<2 (below detection limit)

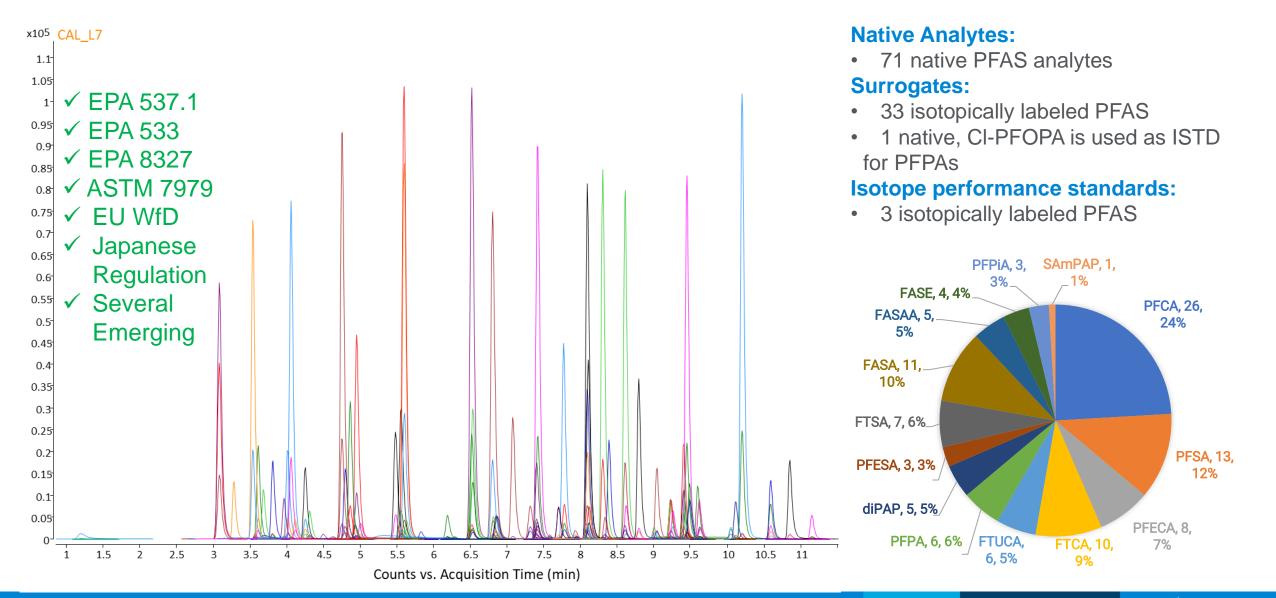
PFNA Background (fg)

>500

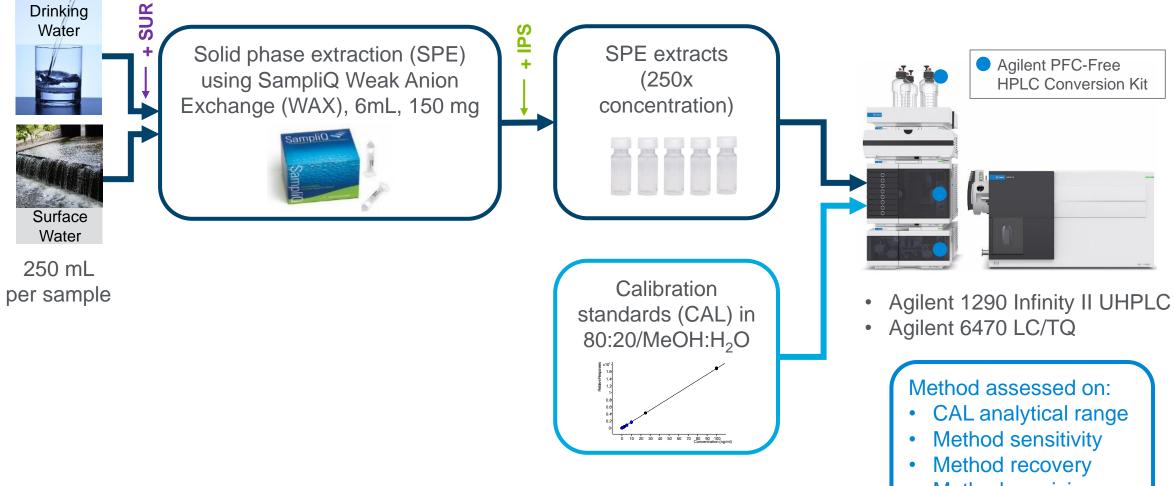
48

37

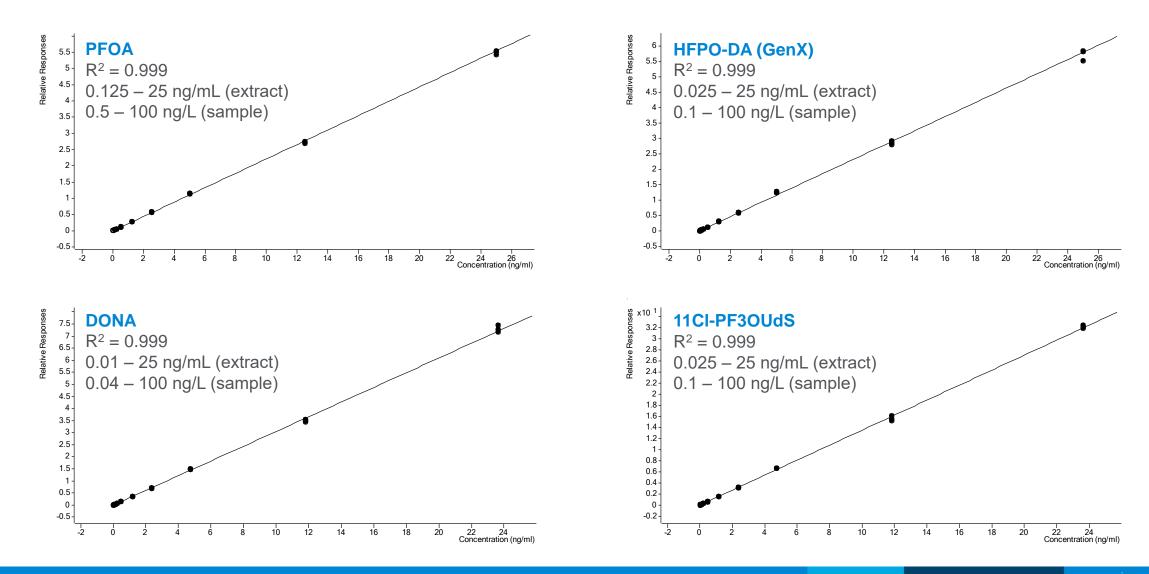

<7 (below detection limit)


Analytical choices for PFAS Quantification LC-MS/MS still seen as gold standard for quantification

SENSITIVITY

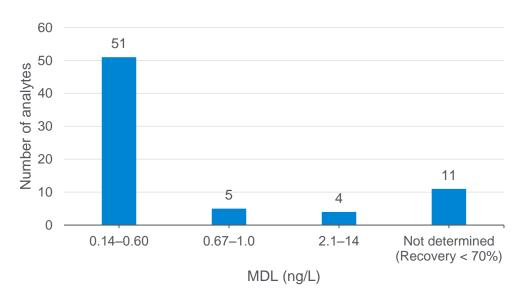


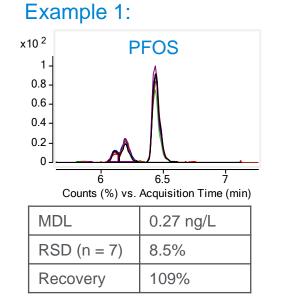
Comprehensive Method – Over 100 PFAS Compounds

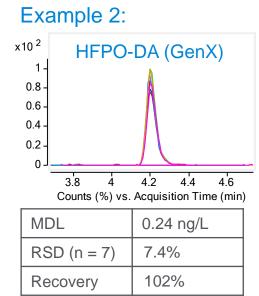

PFAS eMethod Workflow overview

Analytical range and accuracy

Wide analytical range with $R^2 > 0.99$ with good accuracy; RSE <10% for low cal






Method detection limit (MDL)

Matrix: Reagent water (Milli-Q water)

- Calculated following procedure described in 40 CFR Part 136 Appendix Revision 2:
 - 7 replicates of reagent water samples spiked at 1 to 25 ng/L and extracted using the SPE protocol
 - MDL was calculated using the following formula: MDL = S.D. × Student's t-test value (3.143)
- MDLs were determined for 60 out of 71 analytes.
- The method demonstrated good sensitivity with MDLs less than 0.6 ng/L for 51 out of 60 analytes.

Inter-day Reproducibility Study – Method recovery and precision

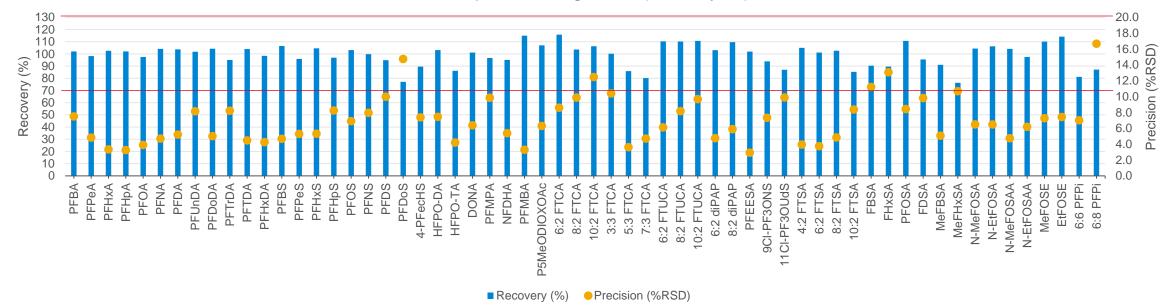
Study was:

- Conducted by 2 different analysts using 2 different units of 6470 LC/TQs on 2 separate calendar dates
- Assessed by spiking and extracting 250 mL of drinking water at "low spike" and "high spike"

Drinking Water	Inter-day Recovery (%)	Inter-day Precision (%RSD)	
Low spike (n = 8) ^a	76 to 116	2.9 to 16.7	60 compounds meet acceptable
High spike (n = 6) ^b	79 to 119	2.2 to 11.7	recovery and precision limits

Surface Water	Inter-day Recovery (%)	Inter-day Precision (%RSD)	
Low spike (n = 8) ^a	73 to 116	3.0 to 19.9	57 com meet ac
High spike (n = 6) ^b	73 to 113	1.6 to 13.7	recovery precisio

^a Low spike concentration: 5, 10, 20 or 50 ng/L


^b High spike concentration: 20, 40, 80 or 200 ng/L

Drinking Water – Method recovery and precision Good recovery and precision for 60 PFAS across 2 batches

Sample Type	Interbatch Recovery (%)	Interbatch Precision (%RSD)	
Low spike $(n = 8)^a$	76 to 116	2.9 to 16.7	Meet the limits of 70-130% and RSD \leq 20%
High spike $(n = 6)^{b}$	79 to 119	2.2 to 11.7	for recovery and precision, respectively

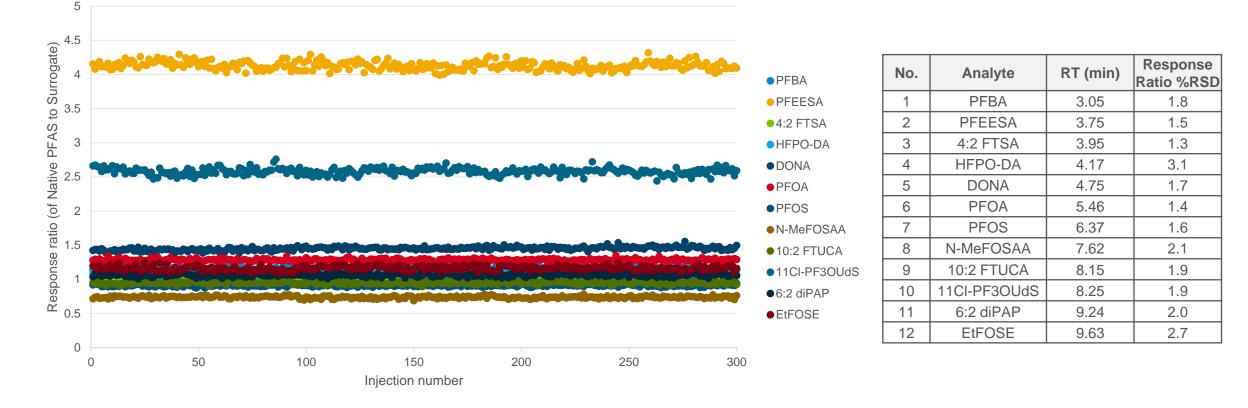
Low Spike Drinking Water (60 analytes)

^a Low spike concentration: 5, 10, 20 or 50 ng/L; ^b High spike concentration: 20, 40, 80 or 200 ng/L

Surface Water – Method recovery and precision Good recovery and precision for 60 PFAS across 2 batches

Sample Type	Interbatch Recovery (%)	Interbatch Precision (%RSD)	
Low spike $(n = 8)^a$	72 to 116	3.0 to 19.9	Meet the limits of 70-130% and RSD \leq 20%
High spike $(n = 6)^{b}$	73 to 120	1.6 to 16.5	for recovery and precision, respectively

Low Spike Surface Water (60 analytes)



^a Low spike concentration: 5, 10, 20 or 50 ng/L; ^b High spike concentration: 20, 40, 80 or 200 ng/L

Method robustness

300 continuous injections of high spike Surface Water samples

Response ratio reproducibility of RSD \leq 3.1% for 12 analytes using continuous operation of 6470 LC/TQ (93 h)

Note: High spike concentration: 20, 40, 80 or 200 ng/L

Method Validation Study for PFAS eMethod

Sample preparation by 2nd operator and analysis using 2nd LC/MS/MS

Activity	#	Test	Procedure	Acceptance criteria	Results
	1 Identification Analyte peaks will be identified using Dynamic MRM transitions Collibration Collibration		All native compounds included in method identified with minimum of 2 MRM transitions except where 2 MRM transitions do not exist.	 Pass 62 out of the 71 compounds have a minimum of 2 MRM transitions. 9 compounds have 1 MRM transition 	
Calibration in neat solvent	2	Accuracy	Calculated concentration from calibration curve as percentage with respect to expected concentration	70–130%	Pass
	3	Linearity	Use at least 5 standard concentrations to generate a linear or quadratic calibration curve	R ² ≥ 0.99	Pass
Interference check (Milli-Q water)	4	System background	Analyze a Lab Reagent Blank (LRB), i.e. unspiked Milli-Q water, after the highest standard in the calibration range.	Demonstrate that the concentration of the native compounds are less than the method detection limit (MDL)	Pass

Method Validation Study for PFAS eMethod

Sample preparation by 2nd operator and analysis using 2nd LC/MS/MS

Activity	#	Test	Procedure	Acceptance criteria	Result
Drinking Water –	5	Precision	RSD of calculated concentrations of replicate extractions	RSD ≤ 20%	Pass • 68 out of 71 compounds had RSD ≤ 20%
Precision and Recovery	6	Recovery	Calculated concentration of each analyte with respect to its spiked concentration, expressed in percentage	70–130%	Pass 60 out of 71 compounds had recoveries within 70–130%
Surface Water –	8	Precision	RSD of calculated concentrations of replicate extractions	RSD ≤ 20%	Pass • 69 out of 71 compounds had RSD ≤ 20%
Precision and Recovery	9	Recovery	Calculated concentration of each analyte with respect to its spiked concentration, expressed in percentage	70–130%	Pass 61 out of 71 compounds had recoveries within 70–130%

Summary

Final optimized method covers 71 analytes from 14 different PFAS groups

Linear or quadratic calibration with $R^2 \ge 0.99$

Sensitivity: MDLs are sufficient to meet most drinking water standard methods or regulatory limits

Interbatch recovery and precision confirms method robustness Method verified for Drinking Water and Surface Water 2

Method robustness: Good response ratio reproducibility for 300 continuous injections of spiked Surface Water samples

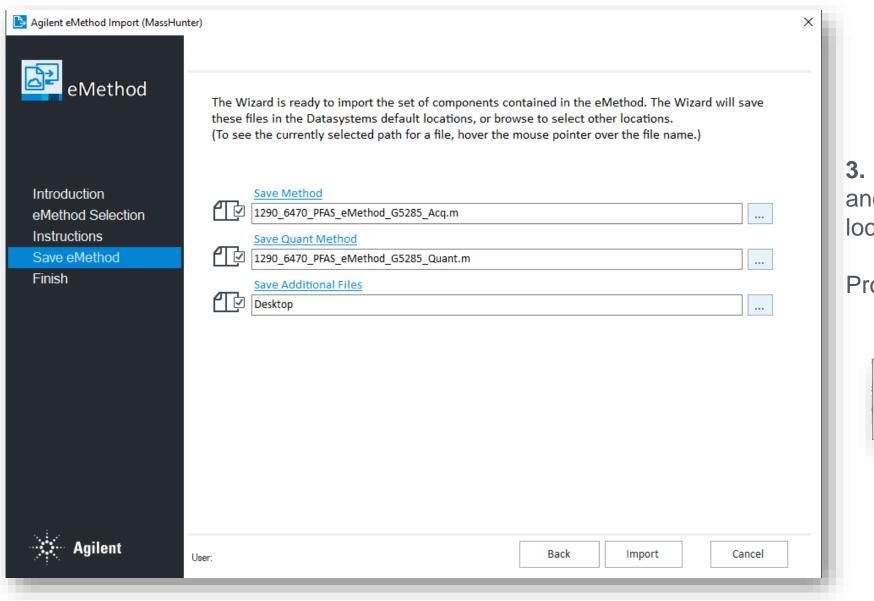
1. Double click eMethod icon

Agilent eMethod Import (MassHun	ter)
eMethod	Navigate to and select the eMethod you wish to import (eMethods have an extension of .emeth). The listing below will show the files that will be unpacked from the eMethod file.
Introduction	
eMethod Selection Instructions	Select eMethod 1290_6470b_pfas_watersolution_lcms_g5285_01.emeth
Save eMethod	Data System : MassHunter
Finish	Data System Version : 10.1 Export Date : 6/3/2021 23:13:12
	Method : 1290_6470_PFAS_eMethod_G5285_Acq.m Quant Method : 1290_6470_PFAS_eMethod_G5285_Quant.m
	Additional Files:
	PFAS_Water_eMethod_AddFiles.zip

2. Review eMethod detail, click Next

eMethod

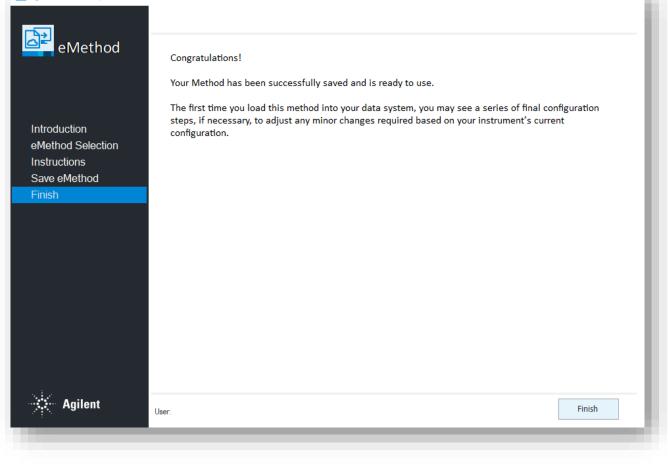
Introduction
eMethod Selection
Instructions
Save eMethod
Finish


Agilent

	exporter of this method, is shown below.
Please review this material before conti	nuing. (Click Print to send a copy to a printer.)
Instructions:	
Instrument Configuration	
Agilent 1290 Infinity II LC with High Speed Pu	ump, Multisampler, and Multicolumn Thermostat
Agilent 6470B Triple Quadrupole LC/MS	
Software Compatibility	
MassHunter Data Acquisition for LC/TQ 10.1	or newer
MassHunter Quantitative Analysis 10.2 or ne	wer
MassHunter Qualitative Analysis 10.0 or new	/er
Required Consumables, Supplies, Standards	, and Laboratory Equipment
Please see a listing of the products required (PFAS_Water_eMethod_Guide.pdf) included	to execute this analysis in the workflow guide with this eMethod.
Background Information	
References:	
Agilent Application Note: Targeted Quantitation	on of Legacy and Emerging Per- and Polyfluoroalkyl Substances
	Print
	Back Next Cance

2. Review the import instructions, print as necessary, click Next.

 \times



3. Review eMethod method content and review/assign installation locations as necessary, click Import.

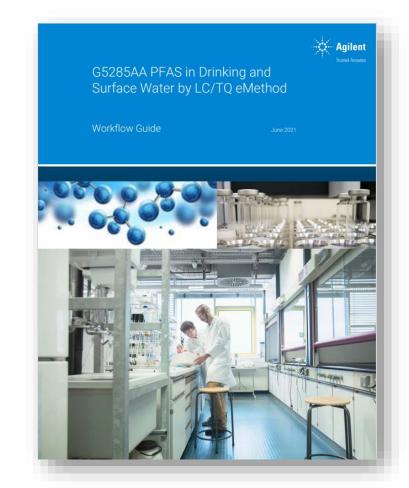
Progress indicator will appear:

4. Import is now complete, click Finish to close wizard.

Additional files should appear on the Desktop (unless location was manually altered

5. Drag/Drop MassHunter folder to the MassHunter directory to incorporate the data and documentation into the correct locations. View the sample preparation training video as necessary.

Agilent PFAS Solutions

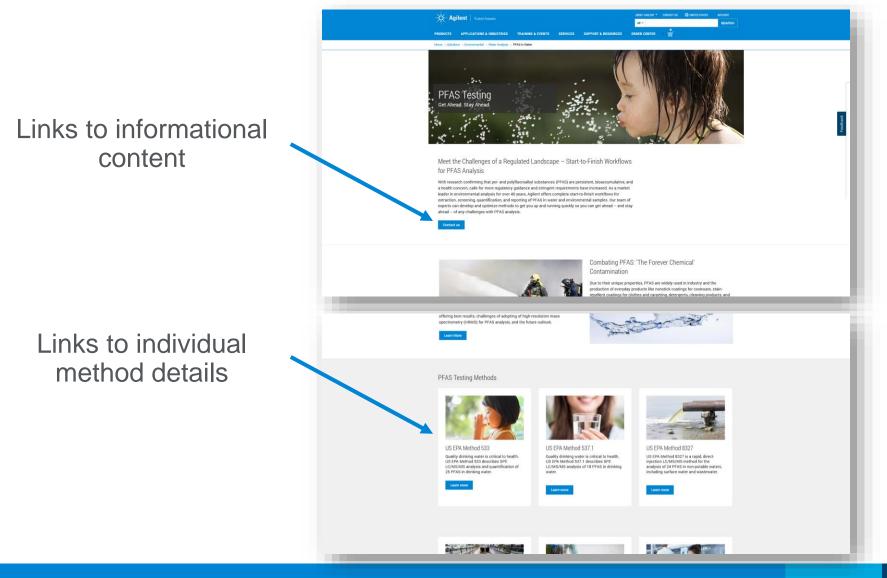

End-to-end Verified Workflow: Turn-key Solution Ready for Immediate Use

PFAS Drinking & Surface Water eMethod

An end-to end, verified solution for the analysis of >100 native & isotopically labeled PFAS in **drinking water** and **surface water** without extensive method development or technical investigation

eMethod Includes:

- Full analysis protocol, from sample prep through reporting
- Optimized MassHunter Acquisition and Quant methods
- Best practices
- Sample preparation training video
- Example calibration data
- Comprehensive ordering information with part number details



Compatible with1290 + 6470 LC/TQ

LATEST PFAS TESTING INFORMATION

A one-stop for all PFAS info on regulatory and emerging methods

Link to PFAS A&I page

